
Figure 1. Overall process of MuGenFBD

*This research was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Education (NRF-2019R1I1A1A01062946) and the Institute for Information &
communications Technology Promotion (IITP) grant funded by the Korea
government (MSIP) (No. 2015-0-00250, (SW Star Lab) Software R&D for
Model based Analysis and Verification of Higher-order Large Complex
System).

기능 블록 다이어그램에 대한 자동 뮤턴트 생성

Lingjun Liu
O, 지은경, 배두환

한국과학기술원
{riensha, ekjee, bae}@se.kaist.ac.kr

Automated mutant generation for function block diagram programs

Lingjun Liu
O, Eunkyoung Jee, Doo-Hwan Bae

School of Computing, Korea Advanced Institute of Science and Technology (KAIST)

Abstract
 Since function block diagram (FBD) programs are widely used to implement safety-critical systems, effective
testing for FBD programs has become important. Mutation testing is an error-based technique. It is highly effective but
computationally expensive. To support developers for FBD testing, we propose an automated mutant generator for FBD
programs. We designed this tool with the cost and equivalent mutant issues in consideration. We conducted experiments
on real industrial examples to present the performance of this tool. The results show that this tool can generate mutants
for FBD programs automatically with low probability of equivalent mutants and low cost. This tool can effectively
support mutation analysis and mutation-adequate test generation for FBD programs.

1. Introduction
The testing for Programmatic Logic Controller (PLC)

programs has become an important issue since the PLCs have
been used to implement safety-critical systems. As Function
Block Diagram (FBD) is one of the standard PLC programming
languages defined in IEC 61131-3 [1], the effective testing of
FBD programs is also necessary. Mutation testing is an effective
technique to measure fault detection capability of test data and
also a way to achieve the high quality required in critical
software [2].

We propose a tool called MuGenFBD to automatically
generate mutants for FBD programs based on the defined
mutation operator [3]. We consider the cost of mutation testing
and equivalent mutant raising issues in our approach. This tool
can considerably ease the mutation analysis and the generation
of mutation adequate test suite for FBD programs.
2. Related work

For FBD testing, some existing studies evaluated
effectiveness of test suites [4] and generated mutation adequate
test suites [5] by mutation testing method. Shin et al. [4]
conducted mutation analysis to investigate the fault detection
capability of test suite and defined five mutation operators:
Constant Value Replacement (CVR), Inverter Insertion or
Deletion (IID), Arithmetic Block Replacement (ABR), Logic
Block Replacement (LBR), and Comparison Block replacement
(CBR). Eniou et al. [5] proposed mutation-based test suite
generation by model checking and defined six mutation
operators. The difference between these two mutation operator
sets is the additional timer block replacement operator defined
in Eniou et al.’s work.

Jee et al. [3] extended Shin et al.’s work and defined 13
mutation operators which includes all the mutation operators
defined in the previous work. This mutation operator set covers
most of defined functions and function blocks. Considering the
misplacement of inputs, this mutation operator set also includes
SWitched Inputs (SWI) operator.
3. Mutant generator for FBD programs
3.1. Overall process

The overall process of MuGenFBD is shown in Figure 1.
MuGenFBD takes subject FBD programs in XML format and
mutation operator selection as input. For each block,
MuGenFBD applies the corresponding block replacement
operator with number of inputs in consideration if the block
replacement operator is selected; MuGenFBD applies the SWI
operator with equivalent mutant issues in consideration if the

KCSE 2020 제 22권 제 1호

154

Table 1. Probabilities of generating equivalent mutants

SWI operator is selected; MuGenFBD applies the IID operator
if the IID operator is selected. For each constant, MuGenFBD
applies the CVR operator when the operator is selected.
3.2. Issues of block replacement operators

Among all functions, there are some extensible functions.
The number of inputs in extensible functions can be increased.
The number of inputs is fixed in non-extensible functions. In the
same group, there might be some extensible functions and some
non-extensible functions, and there might be some different
numbers of input or output between blocks. Thus, when we
designed the block replacement mutation operators, we also
considered whether the block is extensible or not and different
number of inputs and outputs between blocks.
3.3. Equivalent mutant raising issues

An equivalent mutant is functionally equal to the original
program. Calculating mutation score should exclude equivalent
mutants. Thus, the chance for generating equivalent mutants
should be limited. We found the SWI operator can possibly
generate equivalent mutants. For instance, if we apply this
mutation operator to the AND block, there’s no influence on the
logic (behavior). Hence, when applying the SWI operator, we
carefully exclude functions that produce equivalent mutants,
such as ADD (addition), AND, OR, etc.
4. Empirical evaluation
4.1. Subject programs

We chose our subject programs from the Korean Nuclear
Instrumentation and Control System (KNICS) project's BP
system [6]. The BP system includes about 20 modules that can
be categorized into heartbeat (HB) monitoring modules and five
types of trip decision modules: fix-falling (FFTD), fix-rising
(FRTD), variable-rate-falling (VFTD), variable-rate-rising
(VRTD), and manual-reset-falling (MFTD). To test scalability
of the proposed approach, the combinedTD module is
developed by combining several modules in the BP system. We
designed three more subject programs, which are simTRIP,
simGRAVEL, and LAUNCHER, to cover all function block
groups. Table 1 shows the size information of each subject
program.
4.2. Experiment

To demonstrate the performance of our tool, we applied our
tool to subject programs. There are three aspects that we want to
show the performance: (1) probability of producing equivalent
mutants, (2) mutation operator selection, and (3) time efficiency.
Probability of producing equivalent mutants:

While selecting all the mutation operators, we executed
MuGenFBD on all subject programs. As shown in Table 1, in
half of cases, no equivalent mutants were found. In average,

there is only 1.3 percent of probability of generating equivalent
mutants. We utilized the SMT solver to identify equivalent
mutants by finding a solution to distinguish the mutant from the
original program. Without the automated mutant generation, we
cannot evaluate the quality of mutation operator set.
Mutation operator selection:

MuGenFBD can support users freely select their desired
mutation operators. First, we selected the original mutation
operator set: CVR, IID, ABR, LBR, and CBR [4]. Second, we
selected all the implemented mutation operators. In average, the
extended mutation operator set generates over 44% more
mutants than the original mutation operator set.
Time Efficiency:

To present the efficiency, we selected all the mutation
operators and executed MuGenFBD on the large scale program
called combinedTD. MuGenFBD took around three minutes to
generate up to 1948 mutants. MuGenFBD is considered to
provide practically usable performance.
5. Conclusion

This paper proposed an automated mutant generator called
MuGenFBD for FBD programs by considering the cost and
equivalent mutant issues. MuGenFBD achieved significantly
low chance for producing equivalent mutants by only 1.3
percentage. For large scale program, MuGenFBD generated
1948 mutants in around three minutes. According to results,
MuGenFBD can ease the mutation analysis and the automated
generation of mutation-based test suites for FBD programs. In
future work, we plan to develop a tool, which can automatically
generate mutation-based test suite, with the help of MuGenFBD.
6. References

[1] International Electrotechnical Commission (IEC), “IEC61131-3:
International Standard for Programmable Controllers - Part 3:
Programming Languages,” 2013

[2] M. R. Woodward, "Mutation testing—its origin and evolution,”
Information and Software Technology, Vol. 35, No. 3, pp.163-169,
1993

[3] E. Jee, J. Song, and D. H. Bae, “Definition and Applicatio of
Mutation Operator Extensions for FBD Programs,” Journal of
KIISE: Transactions on Computing Practices, Vol. 24, No. 11, pp.
589-595, 2018 (in Korean)

[4] D. Shin, E. Jee E, D. H. Bae, “Empirical evaluation on FBD
model-based test coverage criteria using mutation analysis,”
International Conference on Model Driven Engineering Languages
and Systems, pp. 465-479, 2012

[5] E. P. Enoiu, D. Sundmark, A. Causevic, R. Feldt, andP. Pettersson,
"Mutation-Based Test Generation for PLC Embedded Software
using Model Checking," Proc. of the 28th International
Conference on Testing Software and Systems, Lecture Notes in
Computer Science, Vol. 9976, pp. 155-171, 2016.

[6] Doosan Heavy Industry & Construction, “Software design
specification for the bistable processor of the reactor protection
system,” KNICS.RPS.SDS231-01, Rev.01, 2006 (In Korean)

KCSE 2020 제 22권 제 1호

155

	1. KCSE 2020 - Booklet (20200131) (1)
	목차_v2
	PROCEEDING_V5
	11[10][Regular]KCSE_2020_paper_10
	12[21][Regular]KCSE_2020_paper_21
	13[33][Regular]KCSE_2020_paper_33
	Scheduling-based SDF Model Transformation Technique for Real-Time Performance Analysis of Multiple Applications
	1. 서 론0F
	2. 배경 지식
	3. 관련 연구
	4. 문제 정의 및 풀이
	6. 결론 및 향후 연구
	7. 참고문헌
	[1] E. A. Lee et al. “Static scheduling of synchronous data flow programs for digital signal processing.” IEEE Trans. Comput. 36, 24–35, 1, 1987. DOI:10.1109/TC.1987.5009446
	[2] Choi, J., Oh, H. & Ha, S. “A hybrid performance analysis technique for distributed real-time embedded systems.” Real-Time Syst 54, 562–604 (2018) doi:10.1007/s11241-018-9307-x
	[3] Jinwoo Kim, Hyunok Oh, Junchul Choi, Hyojin Ha and Soonhoi Ha, "A novel analytical method for worst case response time estimation of distributed embedded systems," 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, pp. 1-10, 2...
	[4] Rafik Henia et al. “System level performance analysis–the SymTA/S approach.” In IEE Proceedings-Computers and Digital Techniques 152.2, pp. 148–166, 2005.
	[5] M. Geilen, "Reduction techniques for Synchronous Dataflow graphs," 2009 46th ACM/IEEE Design Automation Conference, San Francisco, CA, pp. 911-916. 2009, doi: 10.1145/1629911.1630146
	[6] Hazem Ismail Ali et al. “Reducing the Complexity of Dataflow Graphs Using Slack-Based Merging.” In:TO-DAES22.2 pp.24. 2017. doi: 10.1145/2956232
	[7] J. L. Pino and E. A. Lee, "Hierarchical static scheduling of dataflow graphs onto multiple processors," 1995 International Conference on Acoustics, Speech, and Signal Processing, Detroit, MI, USA, vol.4, pp. 2643-2646, 1995, doi: 10.1109/ICASSP.19...
	[8] Michael R. Garey et al. “Computers and Intractability; A Guide to the Theory of NP-Completeness.” New York, NY, USA: W. H. Freeman & Co., 1990.ISBN: 0716710455
	[9] Stuijk, Sander & Geilen, M. & Basten, T. (2006). “SDF3: SDF for free.” Proceedings - International Conference on Application of Concurrency to System Design, ACSD. 23. 276 - 278. 2006. 10.1109/ACSD.

	14[39][Regular]KCSE_2020_paper_39
	15[58][Regular]KCSE_2020_paper_58
	16[62][Regular]KCSE_2020_paper_62
	17[63][Regular]KCSE_2020_paper_63
	18[65][Regular]KCSE_2020_paper_65
	19[68][Regular]KCSE_2020_paper_68
	20[78][Regular]KCSE_2020_paper_78
	21[83][Regular]KCSE_2020_paper_83
	22[85][Regular]KCSE_2020_paper_85
	23[91][Regular]KCSE_2020_paper_91
	24[97][Regular]KCSE_2020_paper_97
	1[7][Short]KCSE_2020_paper_7
	11[17][Short]KCSE_2020_paper_17
	12[19][Short]KCSE_2020_paper_19
	13[22][Short]KCSE_2020_paper_22
	14[24][Short]KCSE_2020_paper_24
	15[25][Short]KCSE_2020_paper_25
	16[34][Short]KCSE_2020_paper_34
	17[35][Short]KCSE_2020_paper_35
	18[37][Short]KCSE_2020_paper_37
	19[40][Short]KCSE_2020_paper_40
	20[42][Short]KCSE_2020_paper_42
	21[46][Short]KCSE_2020_paper_46
	22[47][Short]KCSE_2020_paper_47
	23[48][Short]KCSE_2020_paper_48
	24[49][Short]KCSE_2020_paper_49
	25[51][Short]KCSE_2020_paper_51
	26[53][Short]KCSE_2020_paper_53
	27[56][Short]KCSE_2020_paper_56
	28[60][Short]KCSE_2020_paper_60
	29[61][Short]KCSE_2020_paper_61
	30[66][Short][KCSE_2020_paper_66
	31[74][Short]KCSE_2020_paper_74
	32[76][Short]KCSE_2020_paper_76
	33[80][Short]KCSE_2020_paper_80
	34[81][Short]KCSE_2020_paper_81
	35[82][Short]KCSE_2020_paper_82
	36[84][Short]KCSE_2020_paper_84
	37[95][Short]KCSE_2020_paper_95
	38[98][Short]KCSE_2020_paper_98
	39[99][Short]KCSE_2020_paper_99
	40[101][Short]KCSE_2020_paper_101
	41[103][Short]KCSE_2020_paper_103
	11[5][Industry]KCSE_2020_paper_5
	12[6][Industry]KCSE_2020_paper_6
	13[8][Industry]KCSE_2020_paper_8
	14[11][Industry]KCSE_2020_paper_11
	15[13][Industry]KCSE_2020_paper_13
	16[15][Industry]KCSE_2020_paper_15
	17[16][Industry]KCSE_2020_paper_16
	18[52][Industry]KCSE_2020_paper_52
	19[69][Industry]KCSE_2020_paper_69
	20[71][Industry]KCSE_2020_paper_71
	21[87][Industry]KCSE_2020_paper_87
	22[88][Industry]KCSE_2020_paper_88
	11[28][Under]KCSE_2020_paper_28
	12[29][Under]KCSE_2020_paper_29
	13[36][Under]KCSE_2020_paper_36
	14[41][Under]KCSE_2020_paper_41
	15[54][Under]KCSE_2020_paper_54
	16[57][Under]KCSE_2020_paper_57
	17[59][Under]KCSE_2020_paper_59
	18[67][Under]KCSE_2020_paper_67
	19[73][Under]KCSE_2020_paper_73
	20[75][Under]KCSE_2020_paper_75
	21[86][Under]KCSE_2020_paper_86
	22[89][Under]KCSE_2020_paper_89
	23[96][Under]KCSE_2020_paper_96
	24[102][Under]KCSE_2020_paper_102
	25[104][Under]KCSE_2020_paper_104
	26[105][Under]KCSE_2020_paper_105.doc

