KCSE 2021 #1233 A|13.163

PAT 7|8t HIH|ZEE| HAE A|HFAZO HAAH H

2}

[===

B. Zelalem Mihret ©, Lingjun Liu, X224, HiF=t
stxutet 7|23

{zelalem, riensha, ekjee, bae} (@se kaist.ac kr

A Systematic Translation from PAT-based Counterexamples to
Viable Test Cases*

B. Zelalem Mihret ©, Lingjun Liu, Eunkyoung Jee, Doo-Hwan Bae
School of Computing, Korea Advanced Institute of Science and Technology (KAIST)

Abstract

Model checking approach has become popular as it provides the capabilities of exhaustively exploring the state space

of the modeled system and generate counterexamples for properties specified over the model. The generated

counterexamples can be used to derive test cases. However, counterexamples only show states, transitions and the values

of their parameters. In addition, its semantics are also dependent on model specification languages and trace representation

notations. In this paper, we present a focused test case generation approach from PAT model checker. The focus is driven

by specific and putative attack behaviors. To this end, we devised test case specification rules to translate counterexamples

to test cases. We demonstrate our approach by using air traffic control system (ATC) with a goal of minimizing safety risks

due to cyberattacks during aircraft landing operation.

1. Introduction

The task of creating test cases manually is tedious, prone to
error and time-consuming. There are several different approaches
to address these problems. The approaches vary depending on
several factors including the distinct characteristics of application
domains, system development phases at which the test is planned
to be conducted, abstraction level of the system, and intended
goals to be achieved by the test. Due to such complexities, to a
significantly larger extent, researches both in academia and
industries focus on automatic generation of test cases from
certain models of a system [1].

In this paper, we present our investigation and results
obtained on focused test case generation using model checking
technique. The focus is driven by specific and putative attack
behaviors. For example, intercepting communication between
systems and modifying leaked data is one of the common attack
for several systems that rely on message communications. We
model such attack behaviors as part of the system under study.
The modeling includes permitting attacker behavior to access
local variables of the system as one of the legitimate processes,
and study the combined system behaviors for specific properties
(such as starvation or collision properties). This is a focused
approach in that the generated counterexamples show the system
behavior specifically impacted by the attacker actions.
Systematically we refine the counterexamples to formulate viable
test cases.

*This research was partly supported by CybWin Project (No. 287808), Basic
Science Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (NRF-2019R111A1A01062946),
and Institute of Information & communications Technology Planning &
Evaluation (II'TP) grant funded by the Korea government (MSIT) (No. 2015-0-
00250, (SW Star Lab) Software R&D for Model-based Analysis and
Verification of Higher-order Large Complex System).

163

For the purpose of demonstrating the feasibility of our
approach, we use a prototypical case from the aviation domain,
air traffic control system (ATC). ATC is composed of several
autonomous systems such as tlight deck systems (FD), air traffic
service provider (ATSP), control towers, different level human
operators, etc. [2]. In this paper, we particularly focus on ATC
constituent systems that play roles during landing operations of
an aircraft. The system list includes: FD, surveillance data
processing (SDP, ATC decision component), and short term
conflict alert system (STCA). ATC system is huge and complex.
We abstracted only a few functionalities in each constituent
systems. For example, an aircraft represents request for landing
permission, SDP checks the status of runway, current requests,
and assign aircrafts to use runways, and STCA handles warning
and alerts that may result in safety and security constraints. The
three systems are networked, hence there is a risk of cyberattacks.
We model the interaction behavior of the collaborating systems
using CSP modeling language, and verify properties (for example
detecting collision or starvation during landing) using PAT model
checker [3].

PAT 1s a model checking tool. By design, it 1s not directly
tailored for the purpose of test case generation. We demonstrate
how to work around this by using test case specification rules that
can be used to transform counterexamples into a set of actions
and their sequences. With these constructing elements, we further
refined it in a systematic way to formulate a concrete test case.

The remaining part of the paper is organized as follows. A
survey on related works 1s presented in section 2. The overall
approach is discussed in section 3. Section 4 presents illustrative
example to show the application of the proposed approach,
results obtained from the implementation, and shares lessoned
learned in the process. Section 5 is devoted for conclusion and

KCSE 2021 #1233 A|135.164

future work.

2. Related work

There are several model-based test case generation methods
[4]. The distinction between them lies in, among other things, the
addressed modeling paradigm, application domains, the test
generation methods, and the supported coverage criteria. Model
checking is one of the techniques considered for test case
generation [5] [6].

Despite the similarities in the technique, which is model
checking, there is major difference in the way we consider input
models for the model checking process. Specifically, our
approach is different in that we consider the attacker behavior as
input model for the model checking process. This gives chances
to generate focused test cases that can address actual concerns. In
this regard, we have not seen a related work that tries to exploit
putative attack behavior as input model. Thus, the related works
discussed below show model checking technique in general for
test case generation.

S. Mohalik et al. [7] use the model checking technique to
generate automatic test sequences. A test sequence represents
paths in the system transition model. This sequences are used to
conduct the tests. A. Armando et al. [6] deal with generation of
putative attack from model checker and automatic testing on real
implementations for security protocols using test execution
engine. Putative attack in this work is used to represent selected
and refined counterexamples based on domain expert knowledge
from the counterexample pool.

3. Opverall Approach

The overall approach is used to show major concepts and how
the concepts are related in the processes of generating test cases
from model checking. As shown in Fig. 1, an attacker behavior is
considered as input model for the model checking process in our
approach. This makes the approach more focused to the specific
properties modeled in the attacker behavior. Major components of
the overall approach are discussed as follows.

/ systemPaT / Test
model / specification || |
2 rules —
P, P - ¥ :
/ Known attacker / - / Counter / ixifh
/" behavior model/ » Model checking > examples | > REFINEMENT | ..:?' Test cases

T

Security
properties

Test sxpart

Figure 1. Overall approach

3.1. System PAT Model

PAT system model is a representation of a system behavior
using a dedicated module in PAT. We use CSP module for
modeling the system behavior as we are dealing with concurrent
systems. The basic components of such modeling module are set
of states, transitions between states, and rules of transitions. At
run time, the operational semantics of the PAT model translates
the behavior of the model into LTS (Labeled Transition System)
which can be automatically explored by the verification
algorithm [3]. One of the advantages of PAT is that it is designed
with features that facilitate effective incorporation of domain

164

knowledge with formal verification [8]. For example, complex
computation and domain specific knowledge can be designed
separately by using a standard programing language (for example
C#) and can be integrated into the model checking process.

3.2. Putative Attack Behavior Model
Recently, information about cyberattacks including their
techniques, targets and patterns are being identified and
organized. For example, in the air traffic management (ATM)
domain studies have identified putative cyberattacks (common to
similar application domain [9]). For feasibility study, we
investigate a specific and putative attack type in ATC domain.
3.3. Counterexample
A counterexample is a verification engine output that gives
the simulation run leading to the state where a specified property
is violated. PAT model checker has a verification engine that
invokes a procedure to generate a Buchi automaton that
corresponds to the negation of LTL property specification. Then
the a Buchi automaton is composed with the internal model so as
to determine whether the LTL formula is true for all system
execution [3]. A counterexample, therefore, is generated when the
search returns false.

3.4. Test Case Specification Rules

Basically a test case has components that describe inputs,
actions, expected responses and explicit step by step instructions
in order to determine if a system correctly deliver certain
functions. In this regard, the test case specification rules we
propose aims at identifying these constructs from
counterexamples. The test case specification rules are set of rules
to translate and refine counterexamples to test cases.

Counterexamples contains sequenced set of events that have
an initial event and end events. The end event may form a loop
i.e. contain more than one event. We proposed two phased step
by step test case specification rules, presented as follows.

3.4.1. Test case data extraction from counterexamples

This phase is used to identify relevant events for test case
synthesis, and distinguish attacker event and system responses.

(1) Step 1: Start from system event that happened immediately
before the first attacker event in the counterexample, label
this event as START. If the counterexample begins with an
attacker event, take the first attacker event as START.

Step 2: Record variables and their values both found in the
START and the next event

Step 3: Trace the counterexample forward skipping all

@

(3)
system events until (3.1) a system event appears just before
an attacker event, or (3.2) attacker event appears.

Step 4: If (3.1) is the case from step 3, add to the record the
newly discovered system event and the next attacker event

)

parameters and their values, then repeat step 3. If (3.2) is
the case from step 3, add to the record variables and their
values of the attacker event.
(5) Step 5: Repeat step 3 and 4 until there is no more event to
explore, or an event or set of events that create loops. Label

the last event or set of events as END.

KCSE 2021 A233 A|13.165

Between START and END events, collect all variables (local
and global) that show change in their values at least once. These
variable can be used as test inputs both for attacker events and
system responses. All other variables and their values will be used
to maintain sequence of events.

Fig. 2 shows counterexample system and attacker event
transitions. The transition from START to END should satisfy the
following two conditions to be considered for test case
specification. First, a minimum one transition should exist from
system event to attacker event, if START is a system event.
Similarly, a minimum one transition from attacker event to
system event if START is an attacker event. Second, a specific
END event can be at system event or attacker event.

Figure 2. Counterexample event transition diagram

3.4.2. Test case synthesis
Test case synthesis systematically analyze the test case data
record to drive test cases. The synthesis decides preconditions,
test actions, test inputs and expected responses. It analyses the
test data record based on the following steps:

(1) If START is an attack event, no precondition required to
start test, otherwise the starting system event will be
precondition to start test.

(2) Event’s values that change at least once between START
and END is used to construct test inputs. The END event
represents the test case result.

A summarized form of a test case extracted from a
counterexample is shown as follows.
Table 1.Test case components description

Counterexample
<current-event>
data record

Precondition Global or local variables and their values

X Parameter values that have been changed if <current-
Test inputs .
event> is attacker event

System state values if system event follows from
<current-event>

System response . o
If <current-event> is not END, then it will be

precondition for next event

4. Case study

To illustrate the feasibility of our proposed approach, we selected
a small, but complete and non-trivial practical scenario from ATC.
Ensuring satety during landing operations is one of the cntical
concerns in ATC. A test case that can be used to check that
collaborating constituent systems properly function together and
achieve safety goals such as no collision or starvation is one of the

demanding requirements.
4.1. System PAT model

The following code snippets is taken from CSP models
representing the three constituent systems: FD, SDP, and STCA. The
model represent mainly processes and decisions while collaborating
each other.

165

FD(i) = [rgstChnn[i] == notmade && rspnsChnn[i] !=
granted && ntfChnn[i] ==
ready]AIRCRAFT_makeRQST.1i{ rqstChnn[i] = rqst}->
FD(i) [] [(ntfChnn[i] == ready || ntfChnn[i] ==
released) &R alertsignal[i] == GREEN &&
rqstChnn[i] !=

notmade]JAIRCRAFT landing.i{ ntfChnn[i] =
> FD(1) ...

SDP() = [state == listening && flg ==
DOWN]JATC checkrequest{var i = @; var rqcntr = 9; var
gentr = @; while(i < numberOfAirCraft){
if(rspnsChnn[i] == granted){ gcntr = gcntr + 1;};
i++}; 1 = @; while(i < numberOfAirCraft){
if(ntfChnn[i] == released){rspnsChnn[i] = ...
undecided }; i++}; ...

STCA() = [flg == UP && stat == 1]STCA notifyalert{var
i =0; while(i < numberOfAirCraft){ if(rspnsChnn[i]
== granted){ alertsignal[i] = GREEN; stat = @}
else{alertsignal[i] = RED}; i++};} -> STCA()

[] [stat -1]STCA_resetalert{var i = @; var cntr =
9; ...

inaction}-

As stated in the introduction and overall approach section, our
goal is a focused test case generation driven by specific and
putative attack. We model an intruder by considering a putative attack
behavior in ATC domain. Communication links between collaborating
system such as STCA and aircraft system are targets for cybersecurity
attack. For this feasibility study, we consider an eavesdrops attack that
aims at altering notification messages. A snippet showing the intruder
behavior model is included as follow:

INTRDR() = [force ==
i = 1; CNTR = 9;
if(alertsignal[@] == RED){CNTR = 1};
if(CNTR == 1) {force = 1} else {force =
INTRDR() // evasdrope

[1[force == 1]ATTCK mdfy{alertsignal[@] = GREEN;}->
Skip();...

4.2. Property verification

0 && flg == UP]JATTCK_ listen{var

2}} >

One of the important safety properties in ATC domain,
particularly during landing operation, is guarantying non-
existence of collision i.e. more than one aircraft should not be
landing on a run way simultaneously. We specified this property
as follows for three FDs requesting for landing.

// check collision problem

#tidefine collision (ntfChnn[@®] == inaction &R
ntfChnn[1] == inaction) ||(ntfChnn[@] == inaction &&
ntfChnn[2] == inaction)||(ntfChnn[2] == inaction &&
ntfChnn[1] == inaction);

4.3. Test case generation
PAT supports multiple verification options including first
witness trace using DFS, shortest witness trace using BFS, and
others [3]. PAT generates the counterexample events along with
the variables and their values. The verification result from PAT
model checker is shown in Fig 3.

KCSE 2021 A233 A|13.166

Figure 3. PAT model checker counterexample

By following the test case specification rules (test data
extraction steps), we populate test case data record. The test
synthesis process, finally, produces the test case. Table 2. shows
the test case generated from the counterexample.

Table 2. Generated test case

Counterexample

data Precondition Test inputs System response
AIRCRAFT landing.2 .mfc}?nn:[ready, ready,
inaction];
alertsignal=[RED,
RED, GREEN], _
rspnsChmn=[undecided not applicable none
, undecided, granted];
rqstChnn=[rqst,
notmade, rqst];
ATTCK listen none none not applicable
ATTCK_mdfy alertsignal=[GRE
none not applicable
EN, -, -]
N ntfChnn=[inaction,
AIRCRAFT landing.0 L
ready, inaction];
alertsignal=[GREEN,
RED, GREEN];
none not applicable

rspnsChnn=[undecided,
undecided, granted];
1qstChnn=[rqst,
notmade, rqst];

4.4. Result analysis

Using the generated counterexamples and the test case
specification rules described, we showed how we develop a test
case for aircraft landing operation. The two most popular
challenges of using model checking technique for test case
generation are (1) the quality of a model checking result is
entirely dependent on the quality of input models, hence test case
quality inherits similar limitations by association, and (2)
counterexample generated based on test cases don't always map
to real case concerns. This is mainly because counterexamples
are results of exhaustive search for unsatisfied conditions in the
state space without any bound as such for soundness or closeness
check with respect to actual concerns. Our approach has
constituents to attest for real case specific attack concerns
because putative attack behaviors are constructed from real case
reports.

Despite an attacker behavior is introduced into the system
model, there is no direct way to make conclusion about which
properties of the system can be violated. Therefore, the
counterexamples can reveal what can go wrong even without a
putative attack included in the model. In addition to this, a test
case expert can use the generated test cases for a focused
vulnerability analysis.

166

5. Conclusion and Future work

A viable test case can be synthesized systematically from
counterexamples generated using PAT model checker. In this
paper, we present a feasibility study on the possibility of
translating PAT-based counterexamples into viable test cases that
can be used for focused system behavior analysis, particularly
attacker driven. Despite the challenges and limitations that exist
in the model checking approach in general, and the modeling of
an attacker behavior in particular; it can be seen that viable test
cases can be synthesized that will reduce test expert’s effort to
convert it into a concrete test cases. Automating the translation
process is our future work. This work can be extended to address
vulnerability analysis of complex systems, and also runtime
monitoring using the counterexamples as test sequences.

References

S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W.
Grieskamp, M. Harman, M. J. Harrold and P. McMinn, "An
orchestrated survey of methodologies for automated software test
case generation," in Journal of Systems and Software, 2013.

(1

G. Carrozza, M. Faella, F. Fucci, R. Pietrantuono and S. Russo,
"Engineering air traffic control systems with a model-driven
approach," in /EEFE software, 2013.

J. Sun, Y. Liu, I. S. Dong and J. Pang, "PAT: Towards flexible
verification under fairness," in Springer, 2009.

W. Li, F. L. Gall and N. Spaseski, "A Survey on Model-Based
Testing Tools for Test Case Generation," in Springer International
Publishing, 2018.

O. Tkachuk, M. B. Dwyer and C. S. Pasareanu, "Automated
environment generation for software model checking," in /EEE,
18th IEEE International Conference on Automated Software
Engineering, 2003. Proceedings, 2003.

A. Armando, G. Pellegrino, R. Carbone, A. Merlo and D.
Balzarotti, "From model-checking to automated testing of security
protocols: Bridging the gap," in /nternational Conference on Tests
and Proofs, Springer, 2012.

S. Mohalik, A. A. Gadkari, A. Yeolekar, K. Shashidhar and S.
Ramesh, "Automatic test case generation from
Simulink/Stateflow models using model checking," in Sofiware
Testing, Verification and Reliability, Wiley Online Library, 2014.

(2

3]

[4]

[3]

(]

(7]

Hoare and CAR, "Communicating Sequential Processes Prentice
Hall Int." London, 1985.

E. P. Enoiu, A. Causevic, T. J. Ostrand, E. J. Weyuker, D.

Sundmark and P. Pettersson, "Automated test generation using

model checking: an industrial evaluation," in [nternational

Journal on Software Tools for Technology Transfer, Springer,

2016.

[10] M. E. Ruse, "Model checking techniques for vulnerability analysis
of Web applications," 2013.

[11] E. Harison and N. Zaidenberg, "Survey of Cyber Threats in Air
Traffic Control and Aircraft Communications Systems,”" in
Springer, 2018.

[12] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala and R.

Majumdar, "Generating tests from counterexamples," in /EEE,

2004.

(8]

[

