
*This research was partly supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (NRF-2019R1I1A1A01062946), Institute of
Information & communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2015-0-00250, (SW Star
Lab) Software R&D for Model-based Analysis and Verification of Higher-
order Large Complex System), and the MSIT (Ministry of Science and ICT),
Korea, under the ITRC (Information Technology Research Center) support
program (IITP-2020-2020-0-01795) supervised by the IITP.

기능 블록 다이어그램 프로그램에 대한

커플링 효과 가정 분석*

Lingjun Liu
O, 지은경, 배두환

한국과학기술원
{riensha, ekjee, bae}@se.kaist.ac.kr

Analysis of coupling effect hypothesis for
function block diagram programs*

Lingjun Liu
O, Eunkyoung Jee, Doo-Hwan Bae

School of Computing, Korea Advanced Institute of Science and Technology (KAIST)

Abstract
Testing for Function Block Diagram (FBD) programs has become an important issue since FBD programs have

widely been used in safety-critical systems. Mutation testing is considered effective in fault detection. In mutation
testing, the coupling effect hypothesis indicates that test data that can detect simple errors can also detect more complex
errors. Whether FBD programs hold on this coupling effect hypothesis has not been investigated. We conducted
experiments to discuss the coupling effect hypothesis on FBD programs using higher-order mutants. It is experimentally
shown that the subject FBD program holds the coupling effect hypothesis.

1. Introduction
Function Block Diagram (FBD) is one of the standard

Programmable Logic Controller (PLC) programming language
defined in IEC 61131-3 [1]. As PLCs have been used to
implement safety-critical systems, testing of FBD programs has
become an important issue.

Mutation testing is an error-based technique and is effective
to measure the fault detection capability of test data. In mutation
testing, the coupling effect hypothesis means that test data that
can distinguish between the correct program and the faulty
programs by simple errors also have the ability to detect more
complex errors [2]. Because the mutation testing study of the
FBD programs is in its infancy compared to other programming
languages, the question of whether the coupling effect
hypothesis is still valid in the FBD program has not been
answered.

We conducted experiments to investigate the coupling
effect hypothesis on FBD programs. We generated higher-order
mutants from an industrial example program and prepared test
suites that have the ability to detect first-order mutants. The
experimental results indicate that the coupling effect hypothesis
holds on FBD programs.

2. Background and related work
2.1. FBD program

FBD is a data flow language with graphical notations. FBD
programs are executed on PLC cyclically within a scan time. An
FBD program is composed of functions and/or function blocks.
Functions deliver outputs by the input values of current cycle
while function blocks produce outputs by considering not only
the input values but also the data recorded in internal memory.
Due to the data in the internal memory, function blocks may
return different output results with the same input values.

Figure 1 shows an example FBD program. It consists of a
GE (Greater or Equal to) function, an AND function, and a TON
(ON-delay Timer) function block. For TON function blocks, the
output Q is true when the input IN has been true for a pulse time
(PT). The output ET represents the elapsed time that the input
IN has been true. In this example, the output TRIP_LOGIC is
true when the output of the AND block has been true for a
certain time, which is the input K_DELAY. The output TON_et
denotes the duration that the output of the AND block has been
true.
2.2. Related work

Existing studies confirmed the validity of the coupling
effect hypothesis on different programming languages [3, 4] and
logical faults [5]. Offutt [3] conducted experiments to

Figure 1. An example FBD program

2020년 한국소프트웨어종합학술대회 논문집

162

investigate the coupling effect hypothesis on Fortran programs
using second-order and third-order mutants. The experimental
results show that test data developed for first-order mutants
killed a higher percentage of mutants when applied to both
cases of second-order mutants and third-order mutants. Langdon
et al. [4] reformulated mutation testing as a multi-objective
search problem, and their goal is to find higher-order mutants
that are hard to be killed and syntactically similar to the
program under test. For three C benchmark programs from SIR,
Monte Carlo sampling is used to produce random higher-order
mutants. The tests that kill first-order mutants detected 98 to
over 99 % of random higher-order mutants. Kapoor [5] did
formal analysis of the coupling effect hypothesis for Boolean
formulas with logical faults. Boolean logic formulas are
regarded within the context of specification-based testing,
control-flow, and domain testing. The coupling effect hypothesis
is proved to hold on a large number of logical fault classes.

FBD programming language is different from general
procedural languages. There can be non-executed code for
procedural languages. However, FBD programs do not have
explicit branches. All the blocks in a program are executed
every time. That means FBD programs always reach 100%
statement coverage. Furthermore, FBD is a graphical language,
so the frequent fault type also differs from procedural languages.
Nevertheless, no attempts have been made to FBD
programming language yet.
3. Experimental design
3.1. Subject program

Our subject program is a module in the Bistable Processor
(BP) system which is a part of the Reactor Protection System
(RPS). RPS is developed in the Korea Nuclear Instrumentation
and Control System (KNICS) project [6]. Our subject program
is one of trip decision modules in the BP system: Fix Falling
Trip Decision module (FFTD). The FFTD program is composed
of 29 blocks, 12 input variables, and 8 output variables. The
blocks used in the FFTD program are listed as follows: 9 logic
blocks, 6 comparison blocks, 8 selection blocks, 2 timer blocks,
4 arithmetic blocks.
3.2. Mutant generation

We use the tool called MuGenFBD [7], which can generate
first-order mutants for FBD programs with the mutation
operator set defined in Jee et al.’s work [8]. The mutation
operator set can be categorized into four types: 10 Block
Replacement operators, Constant Value Replacement (CVR)
operator, Inverter Insertion or Deletion (IID) operator, and
SWitched Inputs (SWI) operator. The block replacement
operators are as follows: Conversion Block Replacement
(ConBR), Numerical Block Replacement (NBR), Arithmetic
Block Replacement (ABR), Logic Block Replacement (LBR),
Selection Block Replacement (SBR), Comparison Block

Algorithm 1: Second-order mutant generation
Input: mutantList – information list of first-order mutants
 P – subject program
for i = 1 → mutantList.length do
 for j = i+1 → mutantList.length do
 if mutantList[i].blockID = mutantList[j].blockID and
 mutantList[i].mutationOp = mutantList[j].mutationOp then
 continue
 end if
 P’ = mutation(P, mutantList[i], mutantList[j])

output(P’) /* produce a second-order mutant*/
 end for
end for

Replacement (CBR), Bistable element Block Replacement
(BBR), Edge-detection Block Replacement (EBR), Counter
Block Replacement (CouBR), and Timer Block Replacement
(TBR). The mutation operator set covers most types of defined
functions and function blocks. MuGenFBD generated 133 first-
order mutants from the FFTD program. These first-order
mutants are used for test suite generation.

The tool MuGenFBD is slightly modified to generate
second-order mutants by applying mutation operators twice. For
the subject program, we generated second-order mutants that
contained all possible combinations of two mutations. The
procedure of generating second-order mutants is described in
Algorithm 1.
3.3. Test suite generation

Mutation testing provides test data with a mutation
adequacy criterion, which is to achieve a 100% mutation score.
The mutation score is calculated as the number of killed mutants
divided by the total number of non-equivalent mutants. A
mutant is killed when the test case leads to that the output
values of the subject program are different from those of the
mutant. In this study, we consider whether a mutant is strongly
killed or not. Thus, we compared the output sequences of the
mutant and subject program after executing both programs.

Not only can mutation testing be used to assess test data,
but it can also be used to generate mutation-based test suites.
The goal of mutation-based test suites is to achieve a 100%
mutation score. The first-order mutants are used to generate
mutation-based test suites. For mutation-based test suite
generation, we used our developed tool which is designed to
combine the subject program and each mutant repeatedly and to
search for test input data of each mutant by utilizing the Yices
SMT solver. Thus, each test case in the test suite was developed
to distinguish the subject program and a mutant. The tool
generated 121 test cases for the FFTD program. We checked the
mutation score of the test set, and the test set earned a 100%
score for first-order mutants.

2020년 한국소프트웨어종합학술대회 논문집

163

Table 1. Live second-order mutants
Higher-order
mutant type

Original program Mutated program

HF1:
Applying CBR
and SWI operators
to the same block

HF2:
Applying CBR
and IID operators
to the same block

HF3:
Applying LBR
and IID operators
to the same block

HF4:
Applying IID
operator to the
outputs of two
connected blocks

HF5:
Applying IID
operators to the
same connection

4. Evaluation
4.1. Experimental results

We generated total 7124 second-order mutants from the
FFTD program by applying mutation twice. There were 32
mutants that the mutation-based test suite could not kill, and
only four mutants were non-equivalent mutants. The mutation-
based test suite achieved up to a 99.94% mutation score. As
shown in Table 1, we categorized non-killed mutants into five
types. We defined HF as faults caused by higher-order mutation.
HF1 contained the application of CBR and SWI mutation
operators on the same block. HF2 contained the change by
combining CBR and IID mutation operators on the same block.
HF3 contained the combination of LBR and IID mutation
operators on the same block. Furthermore, HF4 and HF5
contained the changes obtained by applying the IID mutation
operator twice. Except for HF3, all types of faults that the
mutation-based test suite could not detect were equivalent
mutants. In HF3, as shown in Table 1, the LBR mutation
operator changed the AND function to the XOR function, and
the IID mutation operator injected an inverter on the output of
the function. In addition to equivalent mutants, the mutation-
based test suite could not detect HF3. While we found some
corner cases that cannot be killed by the test suite designed to
detect simple faults, we observed that the coupling effect
hypothesis generally holds in the case of FBD programs.

4.2. Threats to validity
In the experiment, mutants are generated based on the

mutation operator set defined in Jee et al.’s work [8]. It cannot
be claimed that the mutation operator set is considered as
comprehensive. However, the mutation operator set can cover
all the functions and function blocks included in our subject.

Our subject program does not include all groups of
functions and function blocks, but it is a real example from the
industrial case. Considering more various subject programs will
form the basis of our future work.
5. Conclusion

This paper investigated whether the coupling effect
hypothesis holds on FBD programs. The experiments were
conducted to check if the test suite that killed first-order mutants
is also effective for detecting higher-order mutants. Although
our experimental results are preliminary, results show that the
test suite can kill up to 99.94% of second-order mutants.
Generally, the subject program holds the coupling effect
hypothesis even though we found some corner cases in our
experiment. In future work, we plan to conduct experiments on
more subjects to generalize the results. Also, we plan to
generate third-order or even higher-order mutants to investigate
the coupling effect on FBD programs.

References
[1] International Electrotechnical Commission (IEC), “IEC61131-3:

International Standard for Programmable Controllers - Part 3:
Programming Languages,” 2013

[2] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, Vol. 11,
No. 4, pp. 34-41, 1978

[3] A. J. Offutt, “Investigations of the software testing coulping
effect,” ACM Transactions on Software Engineering and
Methodology (TOSEM), Vol. 1, No. 1, pp. 5-20, 1992

[4] W. B. Langdon, M. Harman, and Y. Jia, “Multi Objective Higher
Order Mutation Testing with Genetic Programming,” 2009 Testing:
Academic and Industrial Conference-Practice and Research
Techniques. IEEE, pp. 21-29, 2009

[5] K. Kapoor, “Formal analysis of coupling hypothesis for logical
faults,” Innovations in Systems and Software Engineering, Vol. 2,
No. 2, pp. 80-87, 2006

[6] Doosan Heavy Industry & Construction, “Software design
specification for the bistable processor of the reactor protection
system,” KNICS.RPS.SDS231-01, Rev.01, 2006 (In Korean)

[7] L. Liu, E. Jee, and D. H. Bae, “Automated mutant generation
for function block diagram programs,” Proceedings of the 22nd
Korea Conference on Software Engineering (KCSE), pp. 154-155,
2020

[8] E. Jee, J. Song, and D. H. Bae, “Definition and Applicatio o
f Mutation Operator Extensions for FBD Programs,” Journal o
f KIISE: Transactions on Computing Practices, Vol. 24, No. 1
1, pp. 589-595, 2018 (in Korean)

2020년 한국소프트웨어종합학술대회 논문집

164

	Main
	Return

